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An expression for the stream function at a far field boundary is derived from the Poisson 
integral in a series form of inverse powers of the radial distance r. The present formulation 
allows solid body or bodies to be contained within an open domain, contrary to the earlier 
ones. Accuracy of this far boundary condition has been tested on three model flows (starting, 
steady, and periodic flows) with computational domains of which outer-boundary radius 
widely varies. The present boundary condition is excellent, especially for the starting flow. For 
the periodic flow, the present boundary condition still performed best in comparison with 
conventional far boundary conditions while the Neumann condition, which had comparable 
accuracy with less computation time for the steady flow, failed altogether to achieve any 
convergence. 0 1990 Academic Press, Inc. 

1. INTRODUCTION 

For a concentrated vertical flow dominated by diffusion in an open domain, it 
is well known that the vorticity spatially decays faster than the velocity. However, 
the vorticity-stream function formulation requires some caution at a far field com- 
putational boundary because of the slow spatial convergence of the stream function 
to the free stream values. A variety of techniques have been used in the literature 
for the far-field stream function condition [l-12]: the free stream values, the poten- 
tial flow, and the Neumann condition for the perturbed stream function. The com- 
putational domain in these methods, however, should be as large as possible to 
reduce the error caused by the inaccurate description of the far boundary condition. 

Chamberlain and Liu [ 131 used a series form of the vector potential developed 
by Ting [14] to compute the interaction of two mutually interacting vortex rings, 
but the method does not allow solid bodies to be present within the computational 
domain. This method has been extended by the present authors [15] to a viscous 
vortex ring reflected from an infinite flat wall. The present far-field stream function 
condition of integral series form is developed to allow general solid body or bodies 
to be contained within the domain. The accuracy of the method has been tested on 
three model problems: the starting flow, the steady-state flow, and the periodic flow 
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past a circular cylinder. Computational domains of which the outer-boundary 
radius widely varies are considered and comparison of results among different 
methods is made. 

2. THE GOVERNING EQUATIONS 

We consider two-dimensional incompressible viscous flow past a circular cylinder 
of radius a in an unbounded domain shown in Fig. 1. Here, U, is the free stream 
velocity and rm is the radius of computational domain. 

The vorticity and stream function equations are first written in the cylindrical 
polar coordinate system. For the purpose of coordinate stretching toward the cylin- 
der we use the transformation r = enc and 0 = nq, by which the governing equations 
take the following conservation form 

(1) 

where 

The contravariant velocity components in the convection term, the derivatives 
al/l/a< and a$/@, are computed by the fourth-order Hermitian relation given below 
[16]. This special numerical treatment will allow the finite difference method to 

“0 
- 

FIG. 1. The problem configuration. 
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retain second-order spacewise accuracy endowed by the central differencing of other 
spatial derivatives, 

The appropriate boundary conditions for the vorticity and stream function would 
be 

at<=0 i, = -*r lw+ 1/w)2 &I 

$tV=O 

at5=tm C,=O a* at in-flow boundary where - < 0 
all 

at out-flow boundary where - > 0 
all 

*cc = It/far (at entire far boundary). 

A homogeneous boundary condition is applied for both [ and $ on the line of 
symmetry, q = 0 and 1, in the case of starting and steady-state flow. For the flow, 
which is not symmetric, i.e., on exhibiting periodic vortex shedding, the condition 
of spartial periodicity must be applied on q = 0 and 2. 

The far boundary stream function, Ic/ 03, can be treated in a variety of ways. If the 
free stream is superposed by a perturbation as 

l)=l+b”+ly w”= UOY) (5) 

then the perturbed stream function at infinity may be treated in four different ways 
as 

(1) the integral-series expansion 

5 1 
$b, = & 1 ; G, sin(&) r;” 

?I=1 

(2) the free stream condition 

*‘,=o 

(3) the potential flow condition 

*‘, = -sin Or;’ 

(6) 

(7) 

(8) 
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(4) the Neumann condition 

(9) 

The boundary condition (6), when superimposed with the base flow, 11/O, constitutes 
the far-boundary stream function I(/, used in the present method. 

The vorticity transport equation (1) is solved for the unsteady case by the Euler 
explicit method and for the steady case by the Euler implicit method. for fast 
convergence. To save computing time for the time-marching cases, the Poisson 
equation (2) is numerically integrated by a direct elliptic solver called the SEVP 
(stabilized error vector propagating) method, devised by Madala [17]. For the 
steady flows, however, an iterative method such as the point SOR would be equally 
good to get the equilibrium solution of the Poisson equation. 

3. INTEGRAL-SERIES METHOD 

Consider the Poisson equation of the stream function 

v=* = -5 (10) 

The following integral equation can be easily derived for the flow with free-stream 
velocity ( Uo, V,) on an open domain 

1 
WI= UoY- v”“-2, 

iii 
i(r) ln(lr, - 4) Wro) n 

where I’~ is the integration variable and V, is the tangential velocity defined positive 
in the counterclockwise direction on the body. The two integrals in Eq. (11) can be 
expressed on a far boundary by an inverse power series of r, as demonstrated in the 
Appendix. Eq. ( 11) then becomes 

t+bm(r, O)= Uoy- Fox---(F”Z+nAo)ln(r) 

+ & i L ((F, + A,) cos(nf3) + (G, + B,) sin(&)} r-” + 0(+). 
fl=ln 

(12) 

If the circular cylinder is stationary relative to the flow, the coefficients A, and B, 
vanish. If the flow is symmetric, F, also becomes zero. Equation (12) then simply 
becomes 
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where 

*=u,y+& i IG n sin(&) r -n + O(r-‘), 
n=in 

(13) 

G, = 2 j/ 2[xy dS, 

G3 = 2 jj- c(3x2y - y3) dS, 

G, = 2 j-j <(4x3y - 4xy3) dS, 

G, = 2 j-1 [(5x4y - 10x2y3 + y’) dS. 

Here the vorticity in the above integrations is calculated from Eq. (1). In the case 
when the flow is asymmetric, the full (not symmetric half) domain should be 
considered for integration. The factor 2 in front of the integrals should then also 
dropped from the G, expressions. When there are vortices alternately shed from the 
cylinder, the neighboring vortices have opposite signs which fortunately lead to the 
inequality F, e G,. The right-hand side of Eq. (13) consists of the free stream value 
(the first term) and the correction terms in series form made of G, contribution 
which have been neglected altogether in the conventional formulations. This 
integral series, expanded up to live terms in the present formulation, plays a signifi- 
cant role in the practical computation, since the computational domain cannot be 
taken as infinite. The integrals in the above coefficients consume some computer 
time; however, the vorticity is nearly zero at most grid points. That is, the vorticity 
generated on the surface of the body is transported to a limited region by means 
of convection and diffusion. In the unsteady problem, computer time increased due 
to the above G, integrals was merely about 10% per time step when the direct 
elliptic solver was adopted for the stream-function Poisson equation. The computer 
cost would become relatively even less if an iterative method were employed for the 
unsteady problem. 

4. RESULT AND DISCUSSION 

In the first two test computations at Re= 20 (the impulsive starting of the 
circular cylinder with the potential flow as an initial condition and the steady-state 
vertical flow), the upper half domain only was considered (0 < 5 < <, , 0 d q < 1). 
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(a) starting flow (Re=20, t=2) 

(b) steady flow (Re=20) 

(c) periodic flow (Re=lOO) 

FIG. 2. Three model flow problems. 

In these two test computations of the present paper, constant step size were used 
as LIP = 8, dt = 0.02, and At = 0.01. In Fig. 2 the three model fluid flows computed 
in the present study (the last is a strictly periodic flow requiring a full computa- 
tional domain) are represented by the instantaneous streamline plots: the integral- 
series boundary condition is used for all the cases at roe = 23.1. 

The four different far-boundary conditions yield essentially the same flow field 
when sufficiently large computational domain is employed. We computed the flow 
for a circular cylinder under impulsive starting (r < 6.6), with the far-boundary con- 
dition at the radius ra, = 81.3 (5, = 70 A() as shown in Fig. 3. The perturbed 
stream function $’ and the vorticity < were observed to have virtually identical con- 
tours among the various boundary conditions in this large computational domain. 
We will refer to this flow computed with rco = 81.3 as the “standard solution.” 

As the computational domain is progressively reduced, there is a deviation of the 
various numerical results from this standard solution. Figure 4 represents the func- 
tional contours obtained for rrn = 23.1 (<, = 50 A(), and Fig. 5 for even smaller 
computational domains. The vorticity contours are well coincident for the different 
boundary conditions, a result that is expected from the behavior of vorticity decaying 
exponentially. The perturbed stream function, however, decays very slowly as seen 
from the inverse series of r in Eq. (13); its consequence is well represented in Fig. 4 
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(a) Integrakeries condition (b) Free stream condition 

(c) Potential flow condition (d) Neumann condition 

FIG. 3. Four boundary conditions with rm = 81.3 show identical result in the area r < 6.6, at Re = 20 
and t = 2; the dotted lines in (b), (c), and (d) are the result from the integral-series condition. 

by the deviation from the standard solution for methods other than integral series. 
The integral series condition retains accuracy as the computational domain is 
even further reduced: the computational domain in Fig. 5 is as small as rao = 6.6 
(5, = 30 AC;) and rm = 3.5 (5, = 20 At). These results suggest that as long as the 
vorticity remains confined and concentrated inside the computational domain, the 
use of the integral series boundary condition gives accurate solutions, even with a 
very limited computational domain. 

Figure 6 represents the time history of the drag coefficients CD with ra = 6.6 for 
the starting cylinder problem up to the time (scaled by u/U,) t= 2. The integral 
series condition perfectly follows the standard solution while the other far-boundary 
conditions offer either over- or under-prediction. Figure 7 shows the drag coekient 
at an instant t =2 computed with various sizes of computational domain. The 
severe domain-dependency of the computed results for the methods other than the 
integral series is evident. 
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(a) Integral-series condition (b) Free stream condition 

(c) Potential flow condition (d) Neumann condition 

FIG. 4. The stream function and vorticity contours with r ou = 23.1 (Re = 20, t = 2). The dotted lines 
represent the standard solution. 

(a) rm=6.6 (Integral-series condition) (b) rm=3.5 (Integrakuxies condition) 

FIG. 5. The stream function and vorticity contours with further reduced domain. The dotted lines 
represent the standard solution. 
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CD 

7 

FIG. 6. The time history 
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N Neumann 

S Integral series 
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of drag coellicient with rm = 6.6 for the starting flow, Re = 20. 
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3.2 

F Free stream 
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N Neumann 
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2.4 
t 

0.5 1.0 1.5 c_ 
2.2 I I I I 1 

3.5 6.6 23 81 r_ 

FIG. 7. Domain-dependency of the computation for the starting flow at Re = 20, t = 2. 
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The steady-state flow past a circular cylinder has twin vortex attached to the 
body at Re=20, and the vorticity in the wake leaves the computational domain 
across the outflow boundary. It makes the numerical solutions more domain- 
dependent as shown in Fig. 8 (the numerical data is given in Table I). The present 
boundary condition shows still better accuracy when compared with others. 
Nevertheless, for the steady-state flow using the point-SOR method, the Neumann 
condition turned out to have the best performance because of large computation 
time of the integral series method (about 100% increase per each iteration). 

The computed results for a strictly periodic flow at Re = 100 having alternating 
vortex shedding is represented in Fig. 9. The mean drag coefficient and the Strouhal 
number of the vortex shedding, St = f(2a)/U,, are plotted separately. The computa- 
tional domain is full in this case with 0 < 5 < t;, and 0 < q < 2 (A< = 0.02, dq = 5, 
At = 0.05). The Neumann condition failed to yield any converged solution even 
with the largest domain tried, r m = 81.3. The present integral series method showed 
the least sensitivity to the size of the computational domain, and its result stayed 
nearest to the asymptotic value obtainable with the large computational radius 
rrn = 81.3. For the range of computational domain tested, 12.3 < rm ~43.4, the 
numerical result of the mean drag coefficient by the integral series method had a 
2.2% variation while the other boundary conditions showed variation up to 8.2%. 

CD 

2.16 - 

2.12 - 

2.08 - 

2.04 - 

2.00 - 

F 
P 

F Free stream 

P Potential flow 

N Neumann 

S Integral series 

1.96 - 
23 81 286 rm 

FIG. 8. Domain-dependency of the computation for the steady flow at Re = 20. 
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TABLE I 

Comparison of the Drag Coetlicient for the Steady Flow at Re = 20 

Boundary conditions r,=23 81 286 

Free stream 2.166 2.028 2.001 
Potential flow 2.160 2.028 2.001 
Integral series 2.020 2.004 1.997 
Neumann 1.965 1.989 1.997 

co 
1.35 

1.25 

St 

F Free stream 

P Potential flow 

S Integral series 

0.165 - 

F Free stream 

P Potential flow 

S Integral series 

12.3 23.1 43.4 r co 12.3 23.1 43.4 r m 

(a) Drag coefficient (b) Strouhal number 

FIG. 9. Domain-dependency of the computation for the periodic flow at Re = 100. 
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5. CONCLUSION 

The integral series expansion of the stream function has been demonstrated to be 
useful as a far-field computational boundary condition. For the unsteady problems 
using a direct elliptic solver, the implementation requires only a modest amount of 
extra work (about 10% per time step) over other boundary conditions which have 
been used. The present study indicated that the use of integral-series boundary 
condition was excellent, especially for the starting flow. As long as the vorticity 
was contained within the computational domain, the method was accurate enough 
to yield virtually identical results for two widely different domains, rm = 3.5 
and Y, = 81.3. In the case when the vorticity left the domain across the outflow 
boundary, accuracy was degraded because the vorticity did not decay fast in the 
wake region. Nevertheless, the present study also indicated that the use of the 
integral-series condition still gave the best results for the periodic flow; for the 
steady flow, however, the Neumann condition gave comparable accuracy with less 
computation time despite its incapability of treating periodic flow with vortex shed- 
ding. The present method is applicable to the general two-dimensional problems 
having arbitrary body or bodies inside an open domain. 

APPENDIX 

From Eq. (11) 

Consider the function in the (r, 0) coordinate system 

(~4.2) 

If we identify points in the plane with complex values and let z = re’@, then we can 
write the function 4 as 

64.3) 

581/91/Z-11 
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Here ‘3 is the real part of the expression. The first integral in the above expression 
becomes merely 

while in the second integral we can use the expansion 

since our test point z is outside a circle containing zO. Substituting this expression 
in the integral and interchanging integration and summation, yield 

Now 

g zo K )I Z 
= rek((rgk cos(k8,)) cos(k0) + (ri sin(kt?,)) sin(M)). 

SO 

W, 0) = & JJ In(r) to dso 
co 

-I( JJ -!- 
k=l ark 

r: cos(k0,) lo dSo 

+ & ( JJ ri sin(k0,) co dSo (A.4) 

One can express the integrals in the above expansion in terms of the variables (x, y) 
by noting that 

r-0” cos(k0,) = %[(ro c0s(e,) + ir, sin(flo))k] 

= %[(x, + iyJk]. 

The imaginary part of (x0 + Qo)” is used to express r$ sin(k0,) as a polynomial in 
x0 and yo. When written in terms of (x, y), the function qi(r, 0) now becomes 
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4th 0) = $ (Co> W 

- { (rloxo) ~0s 13 + (X0x0 yo> sin e> 

- Riob+Y3) cos 20 + (2c&xo yo) sin 28) 

- {(50(+3xoY3) cos 30 + ([,(3x: y, - yi)) sin 30} 

- {(~o(x:-~x:Y:+Y:)) cos 48 + ([(4x: y, - 4x, yi) ) sin 48 } 

- { (io(x; - iox; y; + sxo y;)) cos 58 
+(~0(5~4,yO-10~~y~+y~))sin5e), (A.3 

where ( ) = jjs, dSo. 
The last term of Eq. (A.l) follows a similar process and Eq. (A.l) finally takes the 

form 

t+bfar= Uy- Vx-(Fo+Ao)ln(r) 
271 

+ & t t {(F, + A,) cm(d) + (G, + B,) sin(n0)) r-n + o(r-6), 64.6) 
n=l 

where 

F2 = j-1 Ux* - Y*) dS 

F3 = If 5(x3 - 3xy*) dS, 

F4 = [j- C(x4 - 6x2y2 + y4) dS, 

Fs = j-1 ((x5 - 10x3y2 + 5xy4) dS, 

G,=[[WX 

G2 = j-j 2Cxy ds, 

G3 = J‘s 11(3x*y - y3) ds, 

G4 = jj C(4x3y - 4xy3) dS, 

G5 = 11 [(5x4y - 10x2y3 + y’) dS, 

AO=l V,dl, 

A,= V,xdl, s B,= Vbydl, s 
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A* = s V,(x2 - y2) dl, B2 = 
c 

2 Vbxy dl, 

4=j VA x3 - 3xy*) dl, B3 = j Vb(3x2y - y’) dl, 

A4 = 
s 

V,(x” - 6x2y2 + y”) dl, B, = 
i 

Vb(4x3y - 4xy3) dl, 

A5 = 
I 

Vb(x5 - 10x3y2 + 5xy4) dl, B5 = j Vb(5x4y - 10x2y3 $- y’) dl. 
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